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Abstract-Laminar forced convection with periodic variations of inlet temperature is studied in both 
parallel-plate channels and circular ducts. The generalized integral transform technique is employed to 
reduce the original problem to a system of linear first-order differential equations, which is then solved 
utilizing the related complex matrix eigenvalue problem. Amplitudes and phase lags with respect to the 
inlet condition are determined for fluid bulk temperature and wall heat flux, and the results are presented 
in graphical form as a function of the dimensionless axial distance along the channels for different values 

of the dimensionless frequency of inlet oscillations. 

INTRODUCTION 

THE PERIODIC Graetz problem is of great interest in 
engineering applications related to the thermal 
response of heat exchanger equipment subjected to 
periodic disturbances on inlet temperature. The 
inherent difficulties associated with the analytical 
treatment of such problems have been pointed out in 
recent papers [l, 21. 

It appears that Sparrow and Farias [3] were the first 
investigators to analytically study a problem of this 
type, for slug flow between parallel-plates, including 
wall conjugation effects. The resulting complex 
Sturm-Liouville system was solved by a trial and error 
procedure, and numerical difficulties were encoun- 
tered in the evaluation of the complete spectrum 
of eigenquantities. Later, Kakac and Yener [l, 4, 51 
considered laminar and turbulent flow between 
parallel-plates subjected to periodic variations of 
inlet temperature, but without the conjugation 
with the walls. The related complex Sturrr-Liouville 
system was more involved than that in Ref. [3], and 
an experimental investigation was employed to 
estimate the first set of eigenquantities. 

The difficulties associated with the analytical sol- 
ution of the periodic Graetz problem are strongly 
related to the accurate solution of the corresponding 
complex Sturm-Liouville system. In this work, we 
utilized a variation of the generalized integral trans- 
form technique discussed by C)zi$k and Murray [6] in 
order to alleviate the need for the complex eigenvalue 
problem. That is, we used the standard Sturm-Liou- 
ville system basic to the solution of the classical Graetz 
problem and transformed the original problem into a 
set of first-order linear ordinary differential equations. 
Such a system could be solved accurately by con- 
sidering the related complex matrix eigensystem 
analysis. 

ANALYSIS 

We consider thermally developing, hydro- 
dynamically developed laminar flow inside ducts, such 
as parallel-plate channels and circular tubes. The inlet 
temperature is assumed to vary periodically in time, 
and we seek the thermal response of the system to 
these periodic disturbances, after the initial transients 
have died out. Axial conduction, viscous dissipation, 
free convection, and wall conjugation effects are not 
taken into consideration, and physical properties 
assumed to be constant. Then the energy equation is 
given by : 

in 0 < r < b,z > 0, t > 0, (la) 

where 

0, for parallel-plate channel 

’ = 1, for circular duct, 

with inlet and boundary conditions are given, respect- 
ively, by : 

T(r,O,t) = To+AZ’,,ei~‘, 0 < r <b, t > 0 (lb) 

a T(r, z, 0 
dr 

=o, z>o, t>o UC) 
r=O 

iv, z, t) = To, z > 0, t > 0. (14 

The following dimensionless groups are introduced 

R = f , dimensionless normal coordinate 

Z = 3, dimensionless axial coordinate 

1495 



1496 R. M. COTTA and M. N. C)ZI$IK 

NOMENCLATURE 

A matrix of coefficients in system (9) &R, 2) transformed dimensionless 
akj elements of coefficients matrix A, temperature distribution 

equation (9e) &(Z) transformed fluid bulk temperature 
a& defined by equation (SC) 2 eigenvalues of matrix A 
b radius of circular duct or half the spacing ’ pk eigenvalues of eigenvalue problem (5) 

between parallel-plates $$,ff, R) eigenfunctions of eigenvalue 

f 
vector of constants, equation (13a) problem (5) 
vector defined by equation (9d) 

;A 

Y(Z) fundamental matrix of system (8) 
W frequency of inlet oscillations. 

order of matrix A 

Nk no~alization integral de&red by 
equation (7) 

r radial (or normal) coordinate 
Subscripts 

T( r, z, 1) temperature distribution i column index in system (9) 

T0 mean temperature of inlet oscillations 
k row index in system (9) and order of 

AT, amplitude of inlet oscillations 
eigenvalue 

t time variable 
I lowest-order solution. 

u average flow velocity 
V eigenvectors of matrix A 
x(Z) vector defined by equation (9c) Superscripts 

Z axial coordinate. time transformation defined by equation 

(3) 
Greek symbols integral transform with respect to the R 

!x thermal diffusivity of fluid variable. 

7 = St dimensionless time 

U(R) = 9, dimensionless velocity distribution 

T(r, z,f) - TO 
wcz,4= AT , 

0 

dimensionless temperature d~st~bution 

dimensionless frequency of inlet oscillations. 

Equations (1) are then expressed in dimensionless 
form as : 

aw, z, 2) f%(R,Z,z) 1 a 

a7 +W) az =7i;;z 

x [,ae(~~~,], inO<R<l, Z70,7>0 

W 
0(R, 0,~) = ein*, O$RGl, T>O (2b) 

=o, z70,7>0 @cl 

f?(l,Z,z) = 0, z > 0, z > 0. (24 
Since only the periodic response is of interest, we 

seek a solution in the form : 

@(R, Z, r) = &(R, 2) eiar, (3) 

which results in the following problem for &R, Z) : 

@a) 

&R, 0) = 1 (4b) 

W 

WI 
A formal solution to this problem is a straight- 

forward matter through the use of the classical inte- 
gral transform technique [7]. However, the complete 
numerical solution would require an accurate evalu- 
ation of eigenvalues and eigenfunctions of the cor- 
responding complex non-classical Sturm-Liouville 
system. To alleviate the difficulties in the solution of 
a complex eigenvalue problem, we choose to consider 
an auxiliary problem that is a special case of classical 
Sturm-Liouville systems : 

in 0 < R < I (5a) 
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dti(pkv R) 
-----0, R=O 

dR 

t,&,R)=O, R=l. (5c) 

By utilizing the eigenfunctions of this system, we 
define the following integral transform pair : 

inversion : &R, Z) = f & $(pck, R)&.(Z) @a) 
k=l k 

transform : e”,(Z) = R”U(R) $$$ B”(R, Z) dR, 
k 

(6b) 
where the normalization integral is given by 

Nk = 
s 

I 

R”U(R)[$(k WI2 dR. (7) 
0 

We now operate on equation (4a) with the operator 

s ’ R,, &bkr RI 
0 

N1/2 dR, 
k 

and make use of boundary conditions to obtain : 

d&(Z) 
z +/&(z)+i~ f a$(@) = 0, 

(84 
j= 1 

with the transformed inlet condition 

e=,(O) =3k = 
s 

’ R”U(R) w dR, (8b) 
0 

where 

1 ’ 
&J = a,Z = cNkN,J 112 o Rn$(.ha RN&cj, RI dR* 

j 
(8~) 

System (8) forms a set of infinite, coupled, first- 
order linear differential equations, which can be 
replaced by a finite number of coupled equations if a 
sufficiently large number of terms are considered in 
the summation appearing in equation (8a). Therefore, 
taking a sufficiently large number of equations, N, the 
system (8) can be expressed in matrix form as : 

x’(Z) + Ax(Z) = 0 Pa) 

subject to the initial condition 

x(0) = f (9b) 

where 

x(Z) = {Q,(Z), e=,(Z), . .,&(z)}’ PC) 

f= {3,fi,322,...,3N)T (94 

A = {6,jp~+iGz$}, k,j = 1,2,. . ., N (9e) 

and 

and prime denotes differentiation with respect to Z. 

The matrix A is complex, full, and non-hermitian. 
To solve system (9), we first assume that A has a full 
set of N linearly independent eigenvectors and we seek 
solutions of the form : 

x(Z) = ve-“’ (10) 

where the scalar 1 and the constant vector v are yet to 
be determined. Introducing equation (10) into equa- 
tion (9a), we obtain the following algebraic problem : 

(A-11)~ = 0, (11) 

where Z is the N x N identity matrix. Equation (11) 
corresponds to the problem of finding eigenvalues and 
respective eigenvectors of the complex matrix A. 

Therefore, if x(l), xc*), . . . , xcN) form a fundamental 
set of solutions for equation (9a), the solution of the 
initial value problem (9) can be written as a linear 
combination of these fundamental solutions in the 
form 

or, 

x(Z) = c,x(‘)(Z)+ . +c,x’“3(z) (124 

x(Z) = c,v(‘)e-“tz+ . . . +c,#“)e-‘Nz. (12b) 

In terms of the fundamental matrix of the system 
[8], Y(Z), this result is written more compactly as : 

x(Z) = Y(Z)c. WC) 

To determine the unknown integration constants c, 
we constrain the solution given by equation (12~) to 
satisfy the initial condition, and obtain the following 
linear system of algebraic equations 

Y(O)c = f. (134 

This result establishes the constants c,, c2,. . . , c,, 
where 

Y(0) = {ur}, k,j = 1,2,. . , N. (13b) 

Once equations (11) and (13) have been numerically 
solved using the standard subroutine packages, such 
as Ref. [9], the transformed temperature distribution, 
&R, Z), is determined. Noting that the dimensionless 
temperature B(R, Z, z) is related to the function &R, 
Z) by equation (3), then the dimensionless wall heat 
flux is evaluated by utilizing the following expression : 

am, z> -~ 
aR R=l 

= - kz,& @hk,1)fk(z) (14) 

and the fluid bulk temperature by utilizing 

g,,(Z) = (n+l) 
s 

‘R”U(R)&R,Z)dR (15a) 
0 

or. 

K"(Z) = (n-t 1) f Mk<Z>. Wb) 
k-l 
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where 

J,(Z) = c,~(,‘)e-“IZ+ . . . +q,JN)ee-“G 

lJ,,Z) g c,~j?f)e-“lz+ +q$$)e-bz, 
(16) 

with e”,(Z) assumed negligible for k > N. 
Since equations (14) and (15b) define complex 

quantities, the final solutions can be conveniently 
expressed in polar coordinates as : 

Then, the complete lowest-order solution is given by : 

*exp( -S&&Z). (21) 

Noting that the dimensionless temperature O(R, Z, z) 
is related to the function &(R, Z) by equation (3), then 
the wall heat flux and the fluid bulk temperature are 
determined by utilizing the following expressions : 

a&R, Z) 
aR R= I 

a&R, Z 7) 

k(Z 7) = A@) exp {Wt+ h@Y), 

_ 

(18) 
where A’s and 4’s are, respectively, amplitudes and 

aR 

phase lags of oscillations with respect to the inlet 

= A,(Z)exp{iPr+&(Z)l] (17) 

condition, evaluated from the real and imaginary 

R= I 

parts of equations (14) and (15b). 

* exp (-K&&Z) (22) 

&,,,Jz> = (n+l) f (&‘e-@exp(-ifiu&Z). (23) 
k= I 

Lowest-order solution 
The solution of the system of equations (8) presents 

some difficulty because they are coupled through the 
independent variables. However, if the coefficients 
matrix were a diagonal matrix, the system would be 
uncoupled. Furthermore, the solution of this linear 
system is mathematically equivalent to the problem 
of diagonalizing a matrix and decoupling the system. 
From inspection of the coefficient matrix, we observe 
that, especially for smaller values of R, the diagonal 
elements are dominant with respect to non-diagonal 
elements. This fact suggests a way of obtaining a 
straightforward approximate solution, that is, by let- 
ting j = k in the summation of equation (8a). The 
approximate decoupled system then becomes : 

de;, k(Z) 
* + (pk’+ ina&)& = 0 W-4 

s”,,,,(O) =,ik, k = 1,2,. . , 

which has the explicit solution 

g,,,,(Z) =~ce-“:Ze-‘““$Z, 

Wb) 

(20) 

Again, the complex quantities above can be con- 
veniently expressed in polar form, with reference to 
the inlet condition, as in equations (17) and (18). 
The accuracy of this simple, approximate solution is 
considered in the following section. 

RESULTS AND DISCUSSION 

We consider the thermal response of laminar flow 
inside a parallel-plate channel and circular tube sub- 
jected to periodic variation of the inlet temperature. 
In order to obtain numerical results for the variations 
of the dimensionless wall heat flux and bulk fluid 
temperature, the algebraic eigenvalue problem (11) 
and the linear system of algebraic equations (13a) 
are solved by using apprgpriate subroutines from the 
IMSL package [9], and 8,‘s are determined. We have 
taken N < 40, which proved to be more than sufficient 
for the desired convergence in the range of interest. 
The values of the dimensionless frequency of inlet 
oscillations considered included R = 0.0, 0.1, 0.5, 1 .O, 
2.0 and 5.0, where fi = 0.0 corresponds to the classical 
Graetz problem. We also considered the lowest-order 

Table 1. Comparison of first three eigenvalues 1, and diagonal elements alrk of the coefficients matrix, A, for different values 
of dimensionless frequency, Q in a parallel-plate channel 

k 1 2 3 

n Real Imag. Real Imag. Real Imag. 

0.5 A, 
akk 

1.0 1, 
akk 

2.0 A 
akk 

5.0 I, 
akk 

(O.l885E+Ol, 
(o.l885E+ol, 

(o.l886E+ol, 
(O.l885E+Ol, 

(O.l889E+Ol, 
(o.l885E+ol, 

(0.1912Ef01, 
(O.l885E+Ol, 

0.3806E+OO) 
0.3806EfOO) 

0.7613E+OO) 
0.7613EfOO) 

0.1522EtOl) 
O.l523E+Ol) 

0.3804E+Ol) 
0.3806EfOl) 

(0.2143E+02, 
(0.2143E+02, 

(0.2143E+O2, 
(0.2143Ef02, 

(0.2143Ef02, 
(0.2143Ef02, 

(0.2145Ef02, 
(0.2143E+02, 

0.4768E+OO) 
0.4768E+OO) 

0.9537E+OO) 
0.9537E+OO) 

O.l907E+Ol) 
0.1907EfOl) 

0.4769E+Ol) 
0.4768E+Ol) 

(0.6232E+O2, 0.508OE+OO) 
(0.6232E+02, O.SOSOE+OO) 

(0.6232E+02, O.l016E+Ol) 
(0.6232E+02, O.l016E+Ol) 

(0.6232E+02, 0.2032E+Ol) 
(0.6232E+02, 0.2032E+Ol) 

(0,6232E+02, O.S08OE+Ol) 
(0.6232E+02, 0.5080EfOl) 
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solution, equation (21), since its explicit form is useful 
for fast, approximate numerical evaluation for most 
practical purposes. To illustrate the validity of this 
concept, we present in Table 1, the first three eigen- 
values and diagonal elements of the coefficients matrix 
A, for different values of R, for flow inside a parallel- 
plate channel. Since the problems of diagonalizing 
a matrix and solving a system of linear first-order 
differential equations are mathematically equivalent, 
the comparison of eigenvalues and diagonal elements 
demonstrates the importance of non-diagonal ele- 
ments of matrix A in the process of decoupling the 
present system. From this table we notice that for 
R = 0.5 and 1.0, the eigenvalues and diagonal 
elements are very close ; only for R = 5.0 the first 
eigenvalue is considerably perturbed by the increasing 
magnitude of non-diagonal elements. This com- 
parison provides some confidence on the appro- 
priateness of the lowest-order solution, especially for 
smaller values of CL 

In Fig. 1, we present results for the amplitude and 
phase lag of bulk temperature with respect to the inlet 
condition for a parallel-plate channel, plotted as a 
function of the axial coordinate. The amplitudes for 
both the complete solution and lowest-order approxi- 
mation are practically coincident over the range con- 
sidered. Amplitudes are attenuated with the axial dis- 
tance along the channel. Also shown in this figure are 
the phase lags for s2 = 0.1, 0.5, 1 .O and 2.0, which 
increase significantly with R. If the increase in the 
parameter R is interpreted as a decreasing value of 
the thermal diffusivity of the fluid, c(, the fluid heat 

1 

1 

FIG. 1. Amplitude and phase lag of bulk temperature for 
flow inside a parallel-plate channel with different values 

Z-calWl 

of R. 
FIG. 3. Amplitude and phase lag of bulk temperature for 

flow inside a circular duct with different values of R. 

1.0 

P 

3 
’ ‘0.5 
b 
? 
z 
Y 
Q 

0.0 
, 

r”“‘ -1 

FIG. 2. Amplitude and phase lag of wall heat flux for flow 
inside a parallel-plate channel with different values of Q. 

capacity is regarded as a factor controlling the fluid 
temperature variation. That is, the thermal storage in 
the fluid “delays” the information sensed at each axial 
location downstream with respect to the inlet dis- 
turbance carried by the thermal wave. The predictions 

1.0 

0.0 
0.0 0.1 1.0 1.5 
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0 0.6 1.0 1.5 

FIG. 4. Amplitude and phase lag of wall heat flux for Bow 
inside a circular duct with different values of R. 

through the lowest-order solution demonstrate the 
same trends, and the results are almost coincident as 
far as graphical presentation is concerned. 

Figure 2 shows the amplitudes and phase lags 
obtained from the complete solution for the dimen- 
sionless wall heat flux for flow inside a parallel-plate 
channel. Amplitudes for both solutions are again 
practically coincident over the range of 52 considered 
here. Phase lags demonstrate the same behavior pre- 
viously observed; the lowest-order solution, however, 
appears to be less accurate in this case, indicating 
that the nondiagonal elements become relatively more 
important in the derivatives of the temperature field. 
If an increasing value of S2 is interpreted as decreasing 
values of the fluid thermal conductivity, then less heat 
is transferred through the channel cross section to 
the boundaries at each axial location, which again 
“delays” the information sensed at the boundaries, 
carried by the thermal wave, and increases the phase 

lag with respect to the inlet disturbance at each 
position along the duct. 

Figures 3 and 4, respectively, show the amplitudes 
and phase lags for dimensionless bulk temperature 
and wall heat Aux for flow inside a circular tube. 
General trends similar to those observed for the case 
of parallel-plate duct, including those on the behavior 
of the approximate lowest-order solution, can be 
repeated here for the case of a circular tube. We note 
that amplitudes and phase lags, for bulk temperature 
and wall heat flux, are somewhat larger for the 
parallel-plates geometry than for circular tube. 
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CONVECTION LAMINAIRE FORCEE DANS DES CONDUITS 
AVEC VARIATION PERIODIQUE DE LA TEMPERATURE D’ENTREE 

R&m&La convection laminaire for&e avec variation periodique de la temperature d’entrie est Btudite 
a la fois pour les canaux entre plans paralleles et les tubes circulaires. La technique de transformation 
integrale genbralisee est employee pour reduire le problemme original ii un systeme d’tquations differentielles 
lineaires du premier ordre qui est ensuite resolu en utilisant le probltme conjoint de valeur propre a matrice 
complexe. Des amplitudes et des dephasages par rapport a la condition d’entree sont determines pour la 
temperature moyenne du fluide et pour le flux thermique a la paroi ; les resultats sont present&s sous forme 
graphique en fonction de la distance axiale adimensionnele le long des conduits pour diffkrentes valeurs 

de la frkquence rbduite des oscillations a l’entree. 



Laminar forced convection inside ducts with periodic variation of inlet temperature 1501 

ERZWUNGENE LAMINARE KONVEKTION IN STROMUNGSKANALEN BEI 
muomscH SICH ANDERNDEN EINTRITTSSTEMPERATUREN 

Zuaammenf~ung-Die erzwungene laminare Konvektion bei periodisch sich lndernden Eintritts- 
temperaturen wird sowohl in Kanllen aus parallelen Platten als such in Rohren von Kreisquerschnitt 
untersucht. Mit Hilfe des allgemeinen Integral-Transformations-Verfahrens erhiilt man ein System linearer 
Differentialgleichungen 1. Ordnung, das unter Verwendung des Eigenwertproblems der zugehiirigen kom- 
plexen Matrix gel&t wird. In Abhangigkeit der Randbedingungen am Eintritt werden Amplitude und 
Phasenverschiebung der mittleren Fluidtemperatur und der WLrmestromdichte ermittelt. Die Ergebnisse 
werden grafisch als Funktion der dimensionslosen Laufllnge im Kanal dargestellt, und zwar fiir unter- 

schiedliche Werte der dimensionslosen Frequenz der Eintrittsoszillationen. 

_JIAMMHAPHAfl BbIHY_HoIEHHAII KOHBEKHMIl BHYTPM KAHAJIOB C 
l-lEPMO~MtIECKMM M3MEHEHMEM TEMl-IEPATYPbl HA BXOAE 

AHHOTaUII~-ki3yWeTC5I JlaMllHapHaX BblHyWieHHaK KOHBeKUHR C IlepHO~H'+eCKkiM ki3MeHeHMeM TeMUe- 

paTypbl Ha Bxone B nnocKo-napanJIenbHbIx KaHanax H KpyrnbIX Tpy6ax. Ann ceeneHwi HaqaJbHOii 

3aDa'tH K CACTeMe JIHHeiiHbIX n+$epeHU&,anbHbIX ypaBHeHk,fi IIepBOrO nOpW,Ka, KOTOpbIe 3aTeM 

pel.UatoTCr KaK 3aIla'ta Ha CO6CTBeHHbIe 3Ha'leHUI, ACtIOnb3yeTC9 o606meiiHaa MeTOm,Ka HHTerpanb- 

HOrO npeo6pa30Batiwi.AMnneTynbI A OTCTaBaHWInO@a3eOTHOCATeJlbHO yCnOBHfi Ha BXOLleOn~nenS- 

nllCb L,,,X TeMnepaTypbI KL&?Zl UOTOKa Ha CTeHKe; pe3ynbTaTbI npenCTaBneHb1 B r,,a$WIeCKOti f$O,,Me KaK 

+ytIKUki~ 6e3pa3MepHoro 0ceBoropaccToRHkiIl Bnonb xauanoa nns pasnwsbIx3HaveHGi 6e3pa3MepHOi 

'IaCTOTbI Kone6amiti Ha BXOLLe. 


