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Abstract—Laminar forced convection with periodic variations of inlet temperature is studied in both

parallel-plate channels and circular ducts. The generalized integral transform technique is employed to

reduce the original problem to a system of linear first-order differential equations, which is then solved

utilizing the related complex matrix eigenvalue problem. Amplitudes and phase lags with respect to the

inlet condition are determined for fluid bulk temperature and wall heat flux, and the results are presented

in graphical form as a function of the dimensionless axial distance along the channels for different values
of the dimensionless frequency of inlet oscillations.

INTRODUCTION

THE PERIODIC Graetz problem is of great interest in
engineering applications related to the thermal
response of heat exchanger equipment subjected to
periodic disturbances on inlet temperature. The
inherent difficulties associated with the analytical
treatment of such problems have been pointed out in
recent papers [1, 2].

It appears that Sparrow and Farias [3] were the first
investigators to analytically study a problem of this
type, for slug flow between parallel-plates, including
wall conjugation effects. The resulting complex
Sturm-Liouville system was solved by a trial and error
procedure, and numerical difficulties were encoun-
tered in the evaluation of the complete spectrum
of eigenquantities. Later, Kakag and Yener [1, 4, 5]
considered laminar and turbulent flow between
parallel-plates subjected to periodic variations of
inlet temperature, but without the conjugation
with the walls. The related complex Sturm-Liouville
system was more involved than that in Ref. [3], and
an experimental investigation was employed to
estimate the first set of eigenquantities.

The difficulties associated with the analytical sol-
ution of the periodic Graetz problem are strongly
related to the accurate solution of the corresponding
complex Sturm-Liouville system. In this work, we
utilized a variation of the generalized integral trans-
form technique discussed by Ozigik and Murray [6] in
order to alleviate the need for the complex eigenvalue
problem. That is, we used the standard Sturm-Liou-
ville system basic to the solution of the classical Graetz
problem and transformed the original problem into a
set of first-order linear ordinary differential equations.
Such a system could be solved accurately by con-
sidering the related complex matrix eigensystem
analysis.

ANALYSIS

We consider thermally developing, hydro-
dynamically developed laminar flow inside ducts, such
as parallel-plate channels and circular tubes. The inlet
temperature is assumed to vary periodically in time,
and we seek the thermal response of the system to
these periodic disturbances, after the initial transients
have died out. Axial conduction, viscous dissipation,
free convection, and wall conjugation effects are not
taken into consideration, and physical properties
assumed to be constant. Then the energy equation is
given by:

oT(r,z, 1) oT(r,z,t) a 8 0T(r,z1)
ot +ulr) 9z ror r or ’
in0<r<bz>0,1>0 (la)
where

0, forparallel-plate channel
n= .

1, forcircularduct,
with inlet and boundary conditions are given, respect-
ively, by :

T(r,0,1) = To+ AToe™, 0<r<b, t>0 (lb)

0T(r,z, 1)

—_— =0, z>0,¢t>0 (1c)
ar r=10

Tb,z,t) = T, z>0,t>0. (1d)

The following dimensionless groups are introduced

r . . .
R= 5’ dimensionless normal coordinate
oz . . . .

Z= el dimensionless axial coordinate

u
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NOMENCLATURE

A matrix of coefficients in system (9) O(R,Z) transformed dimensionless
ay;  elements of coefficients matrix A, temperature distribution

equation (%) 8..(2) transformed fluid bulk temperature
a¥;,  defined by equation (8c) A eigenvalues of matrix A
b radius of circular duct or half the spacing  * 4, eigenvalues of eigenvalue problem (5)

between parallel-plates ¥{u, R) eigenfunctions of eigenvalue
c vector of constants, equation (13a) problem (5)
f vector defined by equation (9d) Y(Z) fundamental matrix of system (8)
i -1 w frequency of inlet oscillations.
N order of matrix A
N, normalization integral defined by

equgtxon 7 . Subscripts
r radial (or normal) coordinate

AT J column index in system (9)
T(r,z,t) temperature distribution A row index in s 9) and £
T mean temperature of inlet oscillati . ystem (9) and order o
0 ! tlempera 1niet oscrlations eigenvalue
AT, gmplxtu@e of inlet oscillations / lowest-order solution.
i time variable
7} average flow velocity
v eigenvectors of matrix A )
x(Z) wvector defined by equation (9c) Superscripts
z axial coordinate. time transformation defined by equation
3
Greek symbols - integral transform with respect to the R

« thermal diffusivity of fluid variable.

T = dimensionless time

{
5.5,

u(r)

U(R) = —=, dimensionless velocity distribution
u

T(r,z,)—T,
AT, ’

dimensionless temperature distribution

O(R,Z,7) =

wa

(1

Q=

dimensionless frequency of inlet oscillations.

Equations (1) are then expressed in dimensionless
form as:

00(R,Z,7) 00(R,Z,x) 1 ¢

ot +UR) 0z TR GR
x[R”M], nf<R<l, Z>0,7>0

OR
(2a)
HRO0, 1) =¢, DKR<1, 1>0 (2b)
08(R, Z, 1) _

3R RgO—O, Z>0,t>0 (2¢)
6(1,Z,7)=0, Z>0,t>0 2d)

Since only the periodic response is of interest, we

seek a solution in the form:

8(R,Z,7) = B(R, Z) &', 3

which results in the following problem for (R, Z):

ae(R z) 1 OOR 2|~

U(R) ~= i sE [R —sp |~ 0(R.Z)
(4a)
O(R,0) =1 (4b)

o0(R,Z)|

TR oo™ 0 (4c)
1,2y =0 (4d)

A formal solution to this problem is a straight-
forward matter through the use of the classical inte-
gral transform technique [7]. However, the complete
numerical solution would require an accurate evalu-
ation of eigenvalues and eigenfunctions of the cor-
responding complex non-classical Sturm-Liouville
system. To alleviate the difficulties in the solution of
a complex eigenvalue problem, we choose to consider
an auxiliary problem that is a special case of classical
Sturm~Liouville systems :

d‘f’(ﬂks R)

dR[R” iR :l+#kR"U(RN'(Hk,R)

in 0<R<1 (5a)
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dyr(py, R)
=0 R=0 (5b)
Y, R)=0, R=1. (5¢)

By utilizing the eigenfunctions of this system, we
define the following integral transform pair:

inversion: (R, Z) = {ZN—llﬁw(uk, RB(Z) (6a)

k=1

Y(pe R) ~
NE . —0(R,Z)dR,

(6b)

- 1
transform: 6,(2) = J R'U(R)
(1}

where the normalization integral is given by

Ny = ﬁ RUR)W(ue, R))*dR. M

We now operate on equation (4a) with the operator

1
W R)
N

dR,

and make use of boundary conditions to obtain:

d6(2)
dZ

+ufl(Z)+i0 i atf(z)=0, (8a)

Jj=1

with the transformed inlet condition

= ! ,R
0.0)=f. = J R'U(R) "’(,’\‘,’;,2 Jar, @)
where
1 1
af = 4% = Gy f R (i, RW(, RYAR.  (8c)

System (8) forms a set of infinite, coupled, first-
order linear differential equations, which can be
replaced by a finite number of coupled equations if a
sufficiently large number of terms are considered in
the summation appearing in equation (8a). Therefore,
taking a sufficiently large number of equations, N, the
system (8) can be expressed in matrix form as:

X(Z)+AX(Z) = 0 (9a)
subject to the initial condition
x(0)=f (9b)
where
x(2) = {6:2),042),...0.2}" %)
f={fulo. . Ja}7 (9d)
A={ui+iQat}, kj=12,....,N ()
ahd
w3

and prime denotes differentiation with respect to Z.
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The matrix A is complex, full, and non-hermitian.
To solve system (9), we first assume that A has a full
set of N linearly independent eigenvectors and we seek
solutions of the form:

X(Z) =ve * (10)
where the scalar A and the constant vector v are yet to
be determined. Introducing equation (10) into equa-
tion (9a), we obtain the following algebraic problem:

(A=A =0, (1
where I is the N x N identity matrix. Equation (11)
corresponds to the problem of finding eigenvalues and
respective eigenvectors of the complex matrix A.

Therefore, if x'V, x¥, . .., x form a fundamental
set of solutions for equation (9a), the solution of the
initial value problem (9) can be written as a linear

combination of these fundamental solutions in the
form

X(Z) = ¢ xXZ)+ - +ex™(Z)  (12a)

or,

X(Z) = ;v Ve 4+ oo fow®eWE (12b)

In terms of the fundamental matrix of the system
[8], ¥(2Z), this result is written more compactly as:
x(Z) = ¥(Z)e. (12c)
To determine the unknown integration constants c,
we constrain the solution given by equation (12¢) to
satisfy the initial condition, and obtain the following
linear system of algebraic equations

¥(0)c = f. (13a)

This result establishes the constants ¢, ¢,...,cy,
where

Y(0) = {v"}, k,j=12,...,N. (13b)

Once equations (11) and (13) have been numerically
solved using the standard subroutine packages, such
as Ref. [9], the transformed temperature distribution,
8(R, Z), is determined. Noting that the dimensionless
temperature O(R, Z, 1) is related to the function A(R,
Z) by equation (3), then the dimensionless wall heat
flux is evaluated by utilizing the following expression :

© 1 _
=-2 W!//’(m,l)gk(z) (14)

k=1

(R, 2)
-

R=1

and the fluid bulk temperature by utilizing

b2 = (n+1)f R'URIR,Z)dR (15a)
0
or,

6.(2) = (n+ 1)k§ i@,  asb)
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where

Nl

(Z) = epVe 24 - fop®eine
(16)

OMZ) = cfy’e 7+ - el e,

with §,(Z) assumed negligible for k > N.

Since equations (14) and (15b) define complex
quantities, the final solutions can be conveniently
expressed in polar coordinates as:

90(R, Z,7) _
— R | = A@ewlilnt e @) (A7)
0.(Z.7) = A(Z)exp {i[Qr+ $,(2)]},  (18)

where A’s and ¢’s are, respectively, amplitudes and
phase lags of oscillations with respect to the inlet
condition, evaluated from the real and imaginary
parts of equations (14) and (15b).

Lowest-order solution

The solution of the system of equations (8) presents
some difficulty because they are coupled through the
independent variables. However, if the coefficients
matrix were a diagonal matrix, the system would be
uncoupled. Furthermore, the solution of this linear
system is mathematically equivalent to the problem
of diagonalizing a matrix and decoupling the system.
From inspection of the coefficient matrix, we observe
that, especially for smaller values of Q, the diagonal
elements are dominant with respect to non-diagonal
elements. This fact suggests a way of obtaining a
straightforward approximate solution, that is, by let-
ting j = k£ in the summation of equation (8a). The
approximate decoupled system then becomes :

df.(z -
Pl?) s e +iamium =0 (9)
0,0 =F. k=12, (19b)
which has the explicit solution
Du(Z) = Jre % e 0z, (20)
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Then, the complete lowest-order solution is given by :

GRZ) =Y

k=1

Fb(, R)e %

NI

cexp (—iQatZ). (21)

Noting that the dimensionless temperature 8(R, Z, 1)
is related to the function §(R, Z) by equation (3), then
the wall heat flux and the fluid bulk temperature are
determined by utilizing the following expressions :

(R Z)| _
RULIZEES

o

)

k=1

1 5
NIz T (e, 1) e
k

rexp(—iQakZ) (22)

Bi(Z) = (141 Y, (F)?eHZexp(—iQakZ). (23)
Py

Again, the complex quantities above can be con-
veniently expressed in polar form, with reference to
the inlet condition, as in equations (17) and (18).
The accuracy of this simple, approximate solution is
considered in the following section.

RESULTS AND DISCUSSION

We consider the thermal response of laminar flow
inside a parallel-plate channel and circular tube sub-
jected to periodic variation of the inlet temperature.
In order to obtain numerical results for the variations
of the dimensionless wall heat flux and bulk fluid
temperature, the algebraic eigenvalue problem (11)
and the linear system of algebraic equations (13a)
are solved by using appropriate subroutines from the
IMSL package [9], and 0,’s are determined. We have
taken N < 40, which proved to be more than sufficient
for the desired convergence in the range of interest.
The values of the dimensionless frequency of inlet
oscillations considered included Q = 0.0, 0.1, 0.5, 1.0,
2.0 and 5.0, where Q = 0.0 corresponds to the classical
Graetz problem. We also considered the lowest-order

Table 1. Comparison of first three eigenvalues 4, and diagonal elements a,, of the coefficients matrix, A, for different values
of dimensionless frequency, Q, in a parallel-plate channel

k 1 2 3

Q Real Imag. Real Imag. Real Imag.
05 A (0.1885E+01, 0.3806E +00) (0.2143E+02, 0.4768E+00) (0.6232E+02, 0.5080E +00)

' I (0.1885E+01, 0.3806E+00) (0.2143E+02, 0.4768E+00) (0.6232E+02, 0.5080E +00)
10 Ay (0.1886E+01, 0.7613E+00) (0.2143E+02, 0.9537E+00) (0.6232E+02, 0.1016E+01)

' Ay (0.1885E+01, 0.7613E+00) (0.2143E+02, 0.9537E+00) (0.6232E+02, 0.1016E+01)
20 Ay (0.1889E+01, 0.1522E+01) (0.2143E+02, 0.1907E+01) (0.6232E+02, 0.2032E+401)

’ I (0.1885E+01, 0.1523E+01) (0.2143E+02, 0.1907E+01) (0.6232E+02, 0.2032E+01)
5.0 A (0.1912E+01, 0.3804E+01) (0.2145E+02, 0.4769E+01) (0.6232E+02, 0.5080E+01)

: Ay (0.1885E+01, 0.3806E+01) (0.2143E+02, 0.4768E+01) (0.6232E+02, 0.5080E+01)
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solution, equation (21), since its explicit form is useful
for fast, approximate numerical evaluation for most
practical purposes. To illustrate the validity of this
concept, we present in Table 1, the first three eigen-
values and diagonal elements of the coefficients matrix
A, for different values of Q, for flow inside a parallel-
plate channel. Since the problems of diagonalizing
a matrix and solving a system of linear first-order
differential equations are mathematically equivalent,
the comparison of eigenvalues and diagonal elements
demonstrates the importance of non-diagonal ele-
ments of matrix A in the process of decoupling the
present system. From this table we notice that for
Q=0.5 and 1.0, the eigenvalues and diagonal
elements are very close; only for Q = 5.0 the first
eigenvalue is considerably perturbed by the increasing
magnitude of non-diagonal elements. This com-
parison provides some confidence on the appro-
priateness of the lowest-order solution, especially for
smaller values of Q.

In Fig. 1, we present results for the amplitude and
phase lag of bulk temperature with respect to the inlet
condition for a parallel-plate channel, plotted as a
function of the axial coordinate. The amplitudes for
both the complete solution and lowest-order approxi-
mation are practically coincident over the range con-
sidered. Amplitudes are attenuated with the axial dis-
tance along the channel. Also shown in this figure are
the phase lags for Q = 0.1, 0.5, 1.0 and 2.0, which
increase significantly with Q. If the increase in the
parameter Q is interpreted as a decreasing value of
the thermal diffusivity of the fluid, «, the fluid heat

AMPLITUDE

AS2) or -4(m

0.0 0.5 10 1.5

F16. 1. Amplitude and phase lag of bulk temperature for
flow inside a parallel-plate channel with different values
of Q.
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1.0

ANz)/3.5 or —‘¢|,(Z)/‘K'
od
o

0.0
00

Z=az/(ur?)

Fi1G. 2. Amplitude and phase lag of wall heat flux for flow
inside a parallel-plate channel with different values of Q.

capacity is regarded as a factor controlling the fluid
temperature variation. That is, the thermal storage in
the fluid “delays” the information sensed at each axial
location downstream with respect to the inlet dis-
turbance carried by the thermal wave. The predictions

&

od
*»
1

AMPLITUDE

A2) or —¢fz)x

0.0

0.0
Z=az/(ur?)

FiG. 3. Amplitude and phase lag of bulk temperature for
flow inside a circular duct with different values of Q.
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1.0

Q=20

o
kil

AMPLITUDE

Az2)35 or ~-dfz)ir

Z=az/urd)

FiG. 4. Amplitude and phase lag of wall heat flux for flow
inside a circular duct with different values of Q.

through the lowest-order solution demonstrate the
same trends, and the results are almost coincident as
far as graphical presentation is concerned.

Figure 2 shows the amplitudes and phase lags
obtained from the complete solution for the dimen-
sionless wall heat flux for flow inside a parallel-plate
channel. Amplitudes for both solutions are again
practically coincident over the range of Q considered
here. Phase lags demonstrate the same behavior pre-
viously observed ; the lowest-order solution, however,
appears to be less accurate in this case, indicating
that the nondiagonal elements become relatively more
important in the derivatives of the temperature field.
If an increasing value of Q is interpreted as decreasing
values of the fluid thermal conductivity, then less heat
is transferred through the channel cross section to
the boundaries at each axial location, which again
“delays” the information sensed at the boundaries,
carried by the thermal wave, and increases the phase

R. M. Cotta and M. N. Ozisix

lag with respect to the inlet disturbance at each
position along the duct.

Figures 3 and 4, respectively, show the amplitudes
and phase lags for dimensionless bulk temperature
and wall heat flux for flow inside a circular tube.
General trends similar to those observed for the case
of parallel-plate duct, including those on the behavior
of the approximate lowest-order solution, can be
repeated here for the case of a circular tube. We note
that amplitudes and phase lags, for bulk temperature
and wall heat flux, are somewhat larger for the
parallel-plates geometry than for circular tube.
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CONVECTION LAMINAIRE FORCEE DANS DES CONDUITS
AVEC VARIATION PERIODIQUE DE LA TEMPERATURE D’ENTREE

Résumé—La convection laminaire forcée avec variation périodique de la température d’entrée est étudiée
a la fois pour les canaux entre plans paralléles et les tubes circulaires. La technique de transformation
intégrale généralisée est employée pour réduire le probléme original 4 un systéme d’équations différentielles
linéaires du premier ordre qui est ensuite résolu en utilisant le probléme conjoint de valeur propre 4 matrice
complexe. Des amplitudes et des déphasages par rapport a la condition d’entrée sont déterminés pour la
température moyenne du fluide et pour le flux thermique 4 la paroi ; les résultats sont présentés sous forme
graphique en fonction de la distance axiale adimensionnele le long des conduits pour différentes valeurs
de la fréquence réduite des oscillations a I'entrée.
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ERZWUNGENE LAMINARE KONVEKTION IN STROMUNGSKANALEN BEI
PERIODISCH SICH ANDERNDEN EINTRITTSSTEMPERATUREN

Zusammenfassung—Die erzwungene laminare Konvektion bei periodisch sich dndernden Eintritts-
temperaturen wird sowohl in Kanélen aus parallelen Platten als auch in Rohren von Kreisquerschnitt
untersucht. Mit Hilfe des allgemeinen Integral-Transformations-Verfahrens erhélt man ein System linearer
Differentialgleichungen 1. Ordnung, das unter Verwendung des Eigenwertproblems der zugehérigen kom-
plexen Matrix gelost wird. In Abhédngigkeit der Randbedingungen am Eintritt werden Amplitude und
Phasenverschiebung der mittleren Fluidtemperatur und der Wirmestromdichte ermittelt. Die Ergebnisse
werden grafisch als Funktion der dimensionslosen Lauflinge im Kanal dargestellt, und zwar fiir unter-
schiedliche Werte der dimensionslosen Frequenz der Eintrittsoszillationen.

JTAMUHAPHASA BbIHY>XKJEHHAA KOHBEKIINA BHYTPU KAHAJIOB C
NMEPUOANUYECKHUM M3MEHEHWEM TEMIEPATYPbI HA BXOJE

Annotauns—H3yuaercs 1aMHHapHas BbIHYXIEHHAS KOHBEKLMA C MEPHOAMYECKHM W3MEHEHHEM Temne-
paTyphl Ha BXOIE B IUIOCKO-NIapalie/ibHbiX KaHajax M Kpyrawix Tpybax. JIns csedeHus HayalbHOM
3aJa4M K CHCTeMe JnuHelHbIXx IOuddepeHUMaNbHLIX YpaBHEHHii MepBOro nopsaka, KOTOpble 3aTeM
pellaroTcs Kak 3ajavya Ha COBCTBEHHble 3HAYEHHS, MCMOJb3yeTcs 0000lleHHAS METOOMKA MHTErpaib-
HOTO NpeoOpa3oBaHnA. AMIIUTYABI U OTCTaBaHUA Mo da3e OTHOCHTENLHO YCJOBHI HA BXOJAE ONMpenens-
JIMCh AN TEMINEPATyphl ANPA MOTOKA HA CTEHKE; Pe3y/IbTaThl NpeAcTaBieHs! B rpaduueckoii popme kak
dyHkunM 6e3pa3MepHOro 0CeBOro paccTOSHUA BAOJb KAHAJOB 18 Pa3/IM4HbIX 3HaYeHui Ge3pasMepHO
4acTOThl KosleGaHuil Ha BxoJe.
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